

Public Notice

US ARMY CORPS
OF ENGINEERS
St. Louis District
Gateway to Excellence

Reply To: U.S. Army Corps of Engineers Attn: CEMVS-OD-F

1222 Spruce Street

Public Notice No.

MVS-2017-188

Public Notice Date

March 29, 2017 Expiration Date

Postmaster Please Post Conspicuously Until: April 19, 2017

File Number: MVS-2017-188

Interested parties are hereby notified that the Land Learning Foundation (Sponsor) has requested under their In-Lieu-Fee (ILF) Program Instrument and corresponding amendment; approval for an ILF mitigation project pursuant to 33 CFR 332 and 40 CFR 230 Compensatory Mitigation for Losses of Aquatic Resource; Final Rule (Federal Register / Vol. 73, No. 70 Pages 19594-19705, April 10, 2008).

<u>COMMENTS AND ADDITIONAL INFORMATION</u>: All comments related to this ILF mitigation project and/or requests for public hearing must reach this office no later than the expiration date of the Public Notice to become part of the record and be considered in the decision. Comments should be mailed to the following address:

U.S. Army Corps of Engineers Regulatory Branch 1222 Spruce Street St. Louis, Missouri 63103-2833 ATTN: Mr. Matt Shively

IN-LIEU FEE SPONSOR: Land Learning Foundation

P.O.C. Mr. Larry Pollard

P.O. Box 55

Keytesville, MO 65261

LOCATION: The Sponsor proposes this ILF mitigation project (Calvey Creek Site) within the Meramec River Ecological Drainage Unit (EDU). The project site includes Calvey Creek; two additional unnamed perennial tributaries to Calvey Creek; and approximately one acre of emergent wetland. The site is located west of and adjacent to Highway HH; approximately 3.2 road miles southwest of the intersection of Highway HH and Highway N; near the town of Catawissa, Missouri. The geographic coordinates of the approximate upstream end of the project on Calvey Creek are 38.3846° North, -90.7628° West. The geographic coordinates of the approximate downstream end of the project on Calvey Creek are 38.3805° North, -90.7617° West.

PROJECT DESCRIPTION: The Sponsor seeks approval from the U.S. Army Corps of Engineers (the Corps) and the Interagency Review Team (IRT); which is composed of representatives from the U.S. Environmental Protection Agency, U.S. Fish & Wildlife Service, Missouri Department of Natural Resources, and Missouri Department of Conservation; to establish the Calvey Creek project as an

authorized source of stream mitigation credit. The Sponsor would make the stream mitigation credit available to Department of the Army permittees seeking to fulfill requirements to purchase compensatory mitigation credit, to offset losses of aquatic functions and services. The mitigation project includes the preservation and restoration of forested riparian corridor, as well as the stabilization of approximately 690 linear feet of highly eroded channel bank.

The LLF proposes to establish approximately 45 acres of permanently-protected forested riparian corridor within the project reach. Approximately 29 acres of the forested riparian corridor will require restoration through tree plantings. The preserved and restored corridor will generally extend 300 feet perpendicular from the channel banks. The preserved and restored corridor will occur on both banks of all three of the on-site perennial tributaries. The site encompasses approximately 1,660 linear feet of Calvey Creek, 1,745 linear feet of Tributary A, and 740 linear feet of Tributary B.

The stabilization component of the project will restore bank stability to approximately 690 linear feet of channel with actively failing, near-vertical banks. The proposed stabilization consists of the installation of seven rock vanes; approximately 160 linear feet of longitudinal peak stone toe protection; and the installation of a rock grade control structure. In addition to installation of the vanes and toe armoring, the affected channel banks will be graded to a stable angle, and revegetated with native herbaceous and woody species. Stabilization of this reach will decrease sediment input into the watershed. Halting the lateral migration of the bank will also reduce the potential for loss of planted trees, allowing the restored riparian corridor to mature. While the grade control limits the potential for future channel incision within the stabilized area, it will also function as an at-grade crossing to facilitate access to the western side of Calvey Creek, for restoration and maintenance activities.

The property owner will record a perpetual conservation easement on the mitigation site. The conservation easement will protect on-site Calvey Creek, its tributaries, and their forested corridors from future clearing and other disturbances. The LLF will assume responsibility for long-term monitoring of the requirements of the conservation easement.

If approved by the Corps, the Calvey Creek project will create a total potential credit release of 12,179 stream credits. Mitigation credits generated by this project will be released for debiting on an incremental basis, determined by the project's successful achievement of performance criteria as set forth in the ILF Program Instrument.

This ILF mitigation program does not preclude the requirement for any Section 404 permit applicant, who intends or is required to use stream credits generated by this mitigation project, to comply with Clean Water Act Section 404(b)(1) Guidelines; the National Environmental Policy Act; and our evaluation of probable impacts on public interest.

LOCATION MAPS AND DRAWINGS: See attached.

<u>ADDITIONAL INFORMATION</u>: Additional information may be obtained by contacting Mr. Matt Shively, Project Manager, U.S. Army Corps of Engineers, at (314) 331-8632. Your inquiries may also be sent by electronic facsimile to (314) 331-8741 or by e-mail to matt.s.shively@usace.army.mil.

<u>AUTHORITY:</u> This permit will be processed under Section 404 of the Clean Water Act (33 U.S.C. 1344).

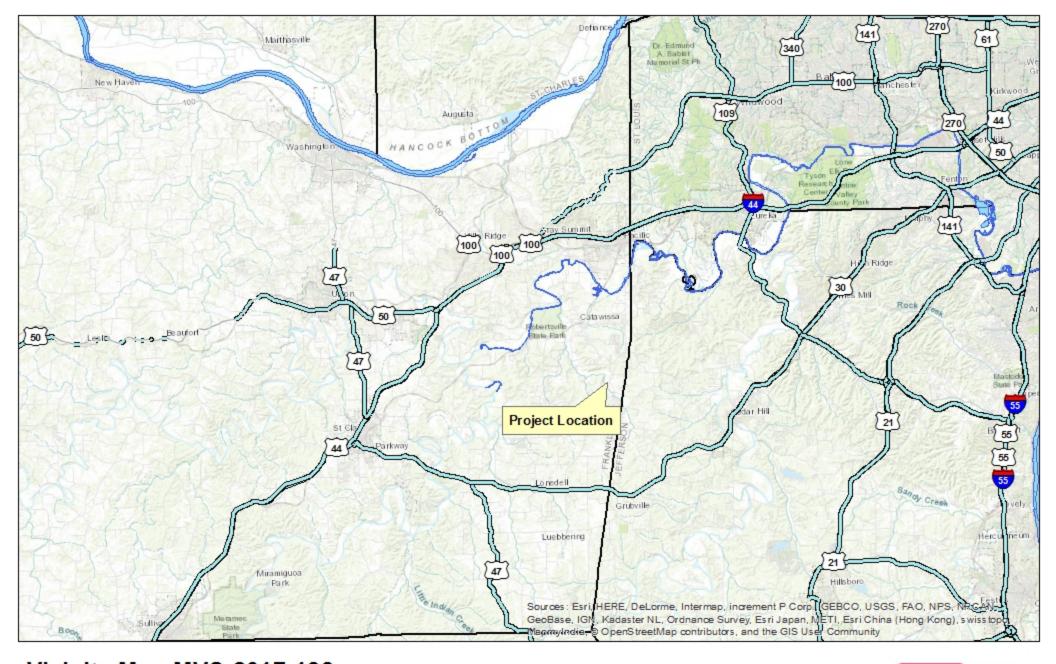
ENDANGERED SPECIES: A preliminary determination, in compliance with the Endangered Species Act, as amended, has been made that the work that is proposed would not affect species designated

as threatened or endangered, or adversely affect critical habitat. Therefore, no formal consultation request has been made to the United States Department of Interior, Fish and Wildlife Service. In order to complete our evaluation, comments are solicited from the Fish and Wildlife Service and other interested agencies and individuals through this Public Notice.

<u>CULTURAL RESOURCES:</u> The ILF mitigation project will be evaluated for compliance with the National Historic Preservation Act of 1966 and 36 CFR 800. The St. Louis District will consider information provided by the State Historic Preservation Office, Federally-recognized tribes, and the public in response to the proposed mitigation project. The Corps may also require an archaeological reconnaissance survey of the project area, if deemed necessary.

<u>PUBLIC INTEREST REVIEW:</u> The purpose of this public notice is to advise all interested parties of the proposed ILF project and to solicit comments. The decision to allow or deny the Sponsor to proceed with the mitigation project will be based on an evaluation of all comments received, and all relevant factors to the proposal, including the cumulative effects thereof. These factors include: conservation, economics, aesthetics, general environmental concerns, wetlands, cultural values, fish and wildlife values, flood hazards, floodplain values, land use, navigation, shoreline erosion and accretion, recreation, water supply and conservation, water quality, energy needs, safety, food and fiber production, mineral needs, and the general needs and welfare of the people. The Corps is soliciting comments from the public; Federal, state, and local agencies and officials; Native American tribes; and other interested parties in order to consider and evaluate the proposed mitigation project.

<u>PUBLIC HEARING</u>: Any person may request, in writing, prior to the expiration date of this public notice, that a public hearing be held to consider this ILF mitigation proposal. Any request for a public hearing shall state, with particularity, the reason for the hearing, and must be based on issues that would warrant additional public review.


DANNY D MCCLENDON

Chief, Regulatory Branch

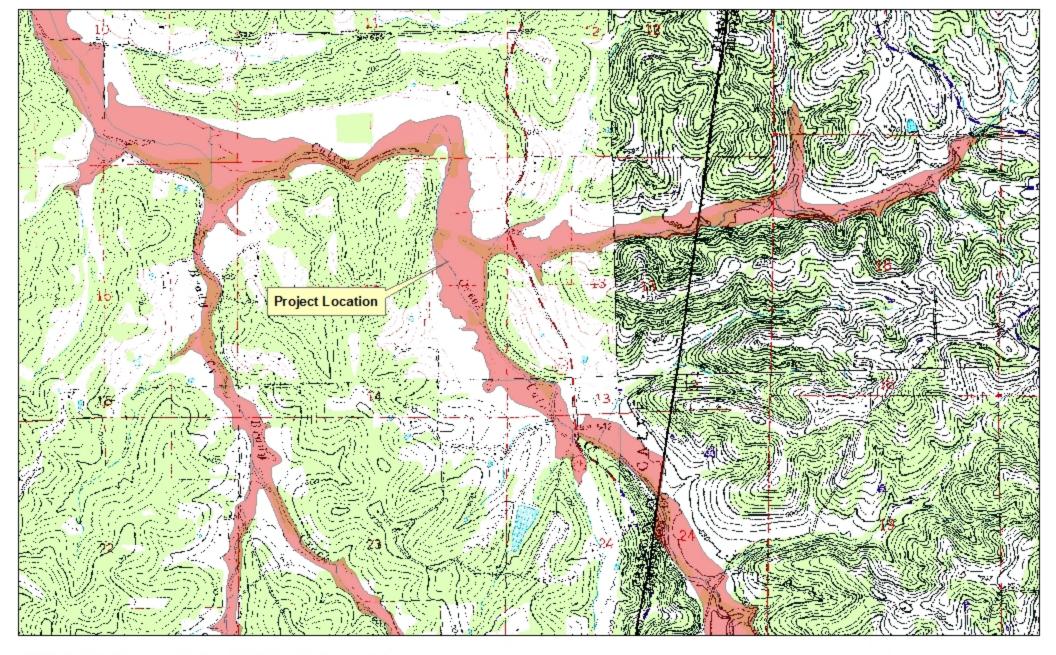
Attachments

NOTICE TO POSTMASTERS:

The Corps requests that this notice be conspicuously and continually placed for 21 days from the date of this issuance of this notice.

Vicinity Map MVS-2017-188

Land Learning Foundation Calvey Creek Project
Franklin County, Missouri



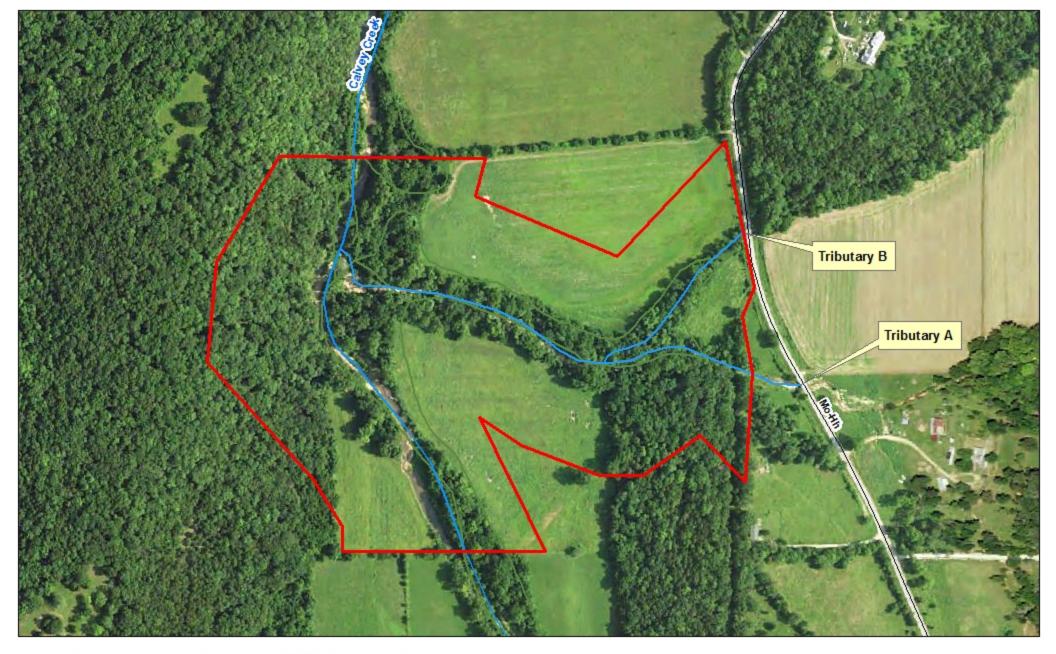
32,000

64,000

16,000

USGS/Floodplain MVS-2017-188

Land Learning Foundation Calvey Creek Project
Franklin County, Missouri



2,500

5,000

1,250

2014 Aerial/NWI Map MVS-2017-188 Land Learning Foundation Calvey Creek Project Franklin County, Missouri

460

920

230

IN-STREAM WORKSHEET

	A11 N	TILLIANT WORLD	ECZELIZ A				
Stream Type	Ephemeral	Intermittent	Perennial Stream				
	0.15	0.2		0.4			
Priority Waters	Tertiary		Secondary	Primary			
	0.05		0.2		0.4		
Net Benefit	Stream Relocation to Accommodate Authorized Project 0.5		Moderate 1.2	Good 2.4		Excellent 3.5	
Site Protection	Corps approved site	protection without	Corps approved site protection recorded with third part			ded with third party	
	third party	grantee	grantee, or transfer of title to a conservancy		conservancy		
	0.1		0.4				
Credit Schedule	Schedu	le 1	Schedule 2			Schedule 3	
	0.3		0.1		0		

Factors	Net Benefit 1	Net Benefit 2	Net Benefit 3	Net Benefit 4	Net Benefit 5	Net Benefit 6
Stream Type	0.40					
Priority Waters	0.05					
Net Benefit	2.40					
Site Protection	0.40					
Credit Schedule						
Sum Factors (M)=	3.25					
Stream Length Benefited (do not count each bank separately or count same channel reach twice) (LF)=	690	,				,
Credits (C) = M X LF	2,242.5			0.1		,
Total Instream Credits Generated C X LK Factor* =						

Total Instream Credits Generated from all Columns = $\frac{2}{2425}$

^{*} Location and Kind (LK) Factor only applies to permittee-responsible mitigation projects (see page 18 of document) .

RIPARIAN BUFFER WORKSHEET

	RIPARIAN BUFFER WURKSHEEL							
Stream Type	Ephemeral	Intermittent		Perennial				
J1	0.15	0.2		0.4				
Priority Waters	Tertiary	Secon	ndary	Primary				
J	0.05	0.2		0.4				
Net Benefit	Ri	parian Restoration/	Establishment, Enl	nancement, and P	reservation Factors			
(for each side of			(select values fr					
stream)		(also see	Minimum Buffer	Width (MBW) pa	ige 15)			
Supplemental	C	Condition: Buffer established, enhanced or preserved on both streambanks						
Buffer Credit	1	To calculate:(Net Benefit Stream Side A + Net Benefit Stream Side B) / 2						
	Corps approve	d site protection	Corps approved	site protection re	ecorded with third party grantee,			
Site Protection		party grantee	C	or transfer of title	to a conservancy			
	0.	0.05						
Credit Schedule	Sche	dule 1	Sched	ule 2	Schedule 3			
	0.	.15	0.0	5	0			
Temporal Lag	Over 20	10 to 20	5 to	10	0 to 5			
(Years)	-0.3	-0.2	-0.	1	0			

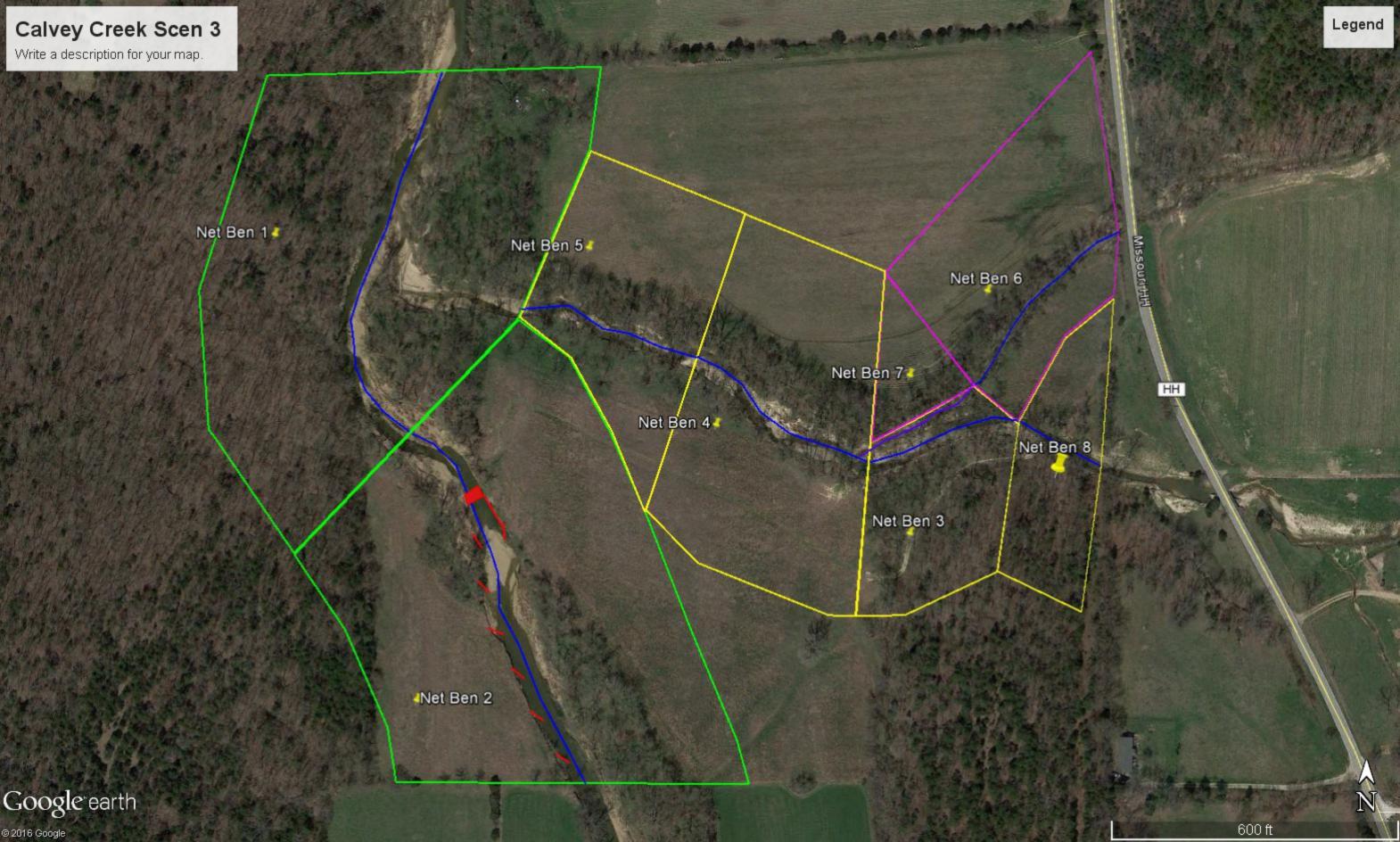
Factors		Net Benefit	Net Benefit 2	Net Benefit	Net Benefit 4	Net Benefit 5	Net Benefit 6
Stream Type		0.40	0,40	0.40	0.40	0.40	0.40
Priority Waters		0.05	0.05	0.05	0.05	0.05	0.05
Net Benefit	Stream Side A	0.27.	1.10	0.27	1,10	0.80	0.70
	Stream Side B	0.27	1.10	0.13	1.10	1.10	1.10
Supplemental E (Buffer on both		0.27	1.10	0.20	1.10	0.95	0.90
Site Protection		0-20	0.20	0.30	0.20	0.20	0.20
Credit	Stream Side A	-	-		ejjúžni resoltució kirk statuny	AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I	rage to the contract of the co
Schedule	Stream Side B		-		manusconstatisms		epitotearranelesserarenanty
Temporal Lag			-0.20	-	-0.70	-0.20	-0.20
Sum Factors (M)=		1.46	3.75	1.25	3.75	3,30	3.15
Linear Feet of Stream Buffered (LF)= (do not count each bank separately or count same channel segment twice)		930	830	330	430	390	445
Credits (C) =M X LF		1,212	3,112	412	1,612	1,287	1,402
Total Credits Generated C X LK Factor * =					94 627		66.0

Total Riparian Credits Generated from all Columns = 9,037 + 890

^{*} Location and Kind (LK) Factor only applies to permittee-responsible mitigation projects (see page 18 of document).

RIPARIAN BUFFER WORKSHEET

KII AKIAN DUFFER WORKSHEET							
Stream Type	Ephemeral	Intermittent			Perennial		
• •	0.15	0.2		0.4			
Priority Waters	Tertiary	Secon	ndary	Primary			
	0.05	0.	.2	0.4			
Net Benefit	Ri	parian Restoration/	Establishment, Enl	nancement, and P	reservation Factors		
(for each side of	8		(select values fr	om Table 1)			
stream)	(also see Minimum Buffer Width (MBW) page 15)						
Supplemental	C	Condition: Buffer established, enhanced or preserved on both streambanks					
Buffer Credit	7	To calculate:(Net Benefit Stream Side A + Net Benefit Stream Side B) / 2					
	Corps approve	d site protection	Corps approved	site protection re	ecorded with third party grantee,		
Site Protection	without third	party grantee	C	or transfer of title	to a conservancy		
	0	.05	0.2				
Credit Schedule	Sche	dule 1	Sched	ule 2	Schedule 3		
	0	.15	0.0	5	0		
Temporal Lag	Over 20	10 to 20	5 to	10	0 to 5		
(Years)	-0.3	-0.2	-0.	1	0		


Factors		Net Benefit	Net Benefit	Net Benefit	Net Benefit	Net Benefit	Net Benefit
		事了	28	3	4	5	6
Stream Type		0,40	0.40				
Priority Waters		6.05	0.05				
Net Benefit	Stream Side A	-	0.27				
	Stream Side B	0.80	0.80				
Supplemental E (Buffer on both		0.40	0.54				
Site Protection	Site Protection		0.20				
Credit	Stream Side A		general consistence consistenc				
Schedule	Stream Side B		SCHOOLS SELECTION SE				
Temporal Lag		-0.00	-0.70				
Sum Factors	(M)=	1.65	2.06				
Linear Feet of Stream Buffered (LF)= (do not count each bank separately or count same channel segment twice)		290	200				
Credits (C) =M X LF		479	411				
Total Credits Generated C X LK Factor * =							

Total Riparian Credits Generated from all Columns = 890

^{*} Location and Kind (LK) Factor only applies to permittee-responsible mitigation projects (see page 18 of document).

^{*} Net Ben 7 will have minimum buffer width established on both sides of Trib B. However, the stream Side B has been excluded to avoid double-dipping with the buffer establishment for Net Ben 3 / Trib A (buffers overlap). At Project Manager's discretion, Supplemental Buffer Credit retained at 50% value, as the established buffer meets the factor objective of rewarding site protection on both sides.

25

